Torus knots that cannot be untied by twisting
نویسندگان
چکیده
منابع مشابه
Twisting Spun Knots
1. Introduction. In [5] Mazur constructed a homotopy 4-sphere which looked like one of the strongest candidates for a counterexample to the 4-dimensional Poincaré Conjecture. In this paper we show that Mazur's example is in fact a true 4-sphere after all. This raises the odds in favour of the 4-dimensional Poincaré Conjecture. The proof involves a smooth knot of S2 in S4 with unusual properties.
متن کاملOn iterated torus knots and transversal knots
A knot type is exchange reducible if an arbitrary closed n{braid representative K of K can be changed to a closed braid of minimum braid index nmin(K) by a nite sequence of braid isotopies, exchange moves and {destabilizations. (See Figure 1). In the manuscript [6] a transversal knot in the standard contact structure for S3 is de ned to be transversally simple if it is characterized up to trans...
متن کاملTransversal Torus Knots
We classify positive transversal torus knots in tight contact structures up to transversal isotopy.
متن کاملAspherical manifolds that cannot be triangulated
Although Kirby and Siebenmann [13] showed that there are manifolds which do not admit PL structures, the possibility remained that all manifolds could be triangulated. In the late seventies Galewski and Stern [10] constructed a closed 5–manifold M 5 so that every n–manifold, with n 5, can be triangulated if and only if M 5 can be triangulated. Moreover, M 5 admits a triangulation if and only if...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Complutense
سال: 2001
ISSN: 1988-2807,1139-1138
DOI: 10.5209/rev_rema.2001.v14.n2.16993